
NAVAL POSTGRADUATE SCHOOL
Monterey, California

SELUCTV: '• ~SS'

JUL 2 7 1993A
THESIS

SOFTWARE RELIABILITY
0) ~MANAGEMENT THROUGH METRICS

by

Douglas R. Burton

C• -•March 1993

Thesis Advisors: Donald P. Gaver
SNorman F. Schneidewind

Approved for public release; distribution is unlimited.

93-16814lIIlllI 111il 1ltii1111 111!lltIIl!llll! 1,1 1I.

Form Approved
REPORT DOCUMENTATION PAGE OMB No o70o-o088

Pvofic 'epo,,no burcen ' of t'•, (•30ectlon of olormaIlOn '- t%1,'-ai to a.eraqp ' ýc.r oe, ,w •p rwe , .'drno t t',e 1^e Or t,•,e-nq ,nsi.cmons. se'a1 e m n k
gathe.nq a n lanta'mntg tihe uata needed ano com'eiing aro re-,eroo r,,e ýolleont of t ",malon Seno comments regardang th-s buraen estimate or an, rtme, a$oei of tt,
collee on ot mtorral'&cn. Incad-g su ggt•tonS

f
or redutoro *ri ouroeo tI, Wasahnogton Heaoauarte,' Stro*es DOedorate for nfor-x&ItOn Olerat~onts aa Ra•eo.I$ 12 jefers, on

DL n, Hg.t a8 Sor$vte 1204 Aft ngron vA 2220 2-4302 &no tC th. O r•- -f Manaoefrvent and Budgel Papeorwork RA l•'1mon Project (0704-0188) 75as'.nqton C 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I March 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Software Reliability Management Through Metrics

6. AUTHOR(S)

BURTON, Douglas R.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, distribution is unlimited

13. ABSTRACT (Maximum 200 wordS)

As systems become increasingly software dependent, their reliability will accordingly depend
more so on the reliability of their resident software. Just as techniques and processes were developed
and improved to ensure hardware reliability, so must techniques evolve to ensure software reliability.

Two questions are addressed by this thesis. First, how do we measure software reliability
throughout a project's lifecycle? Second, is there a tool which will provide effective insight into the test-
now-or-later problem?

The solution to our first question is a U.S. Army software procurement methodology which is
briefly outlined as the overall framework for software procurement in this thesis. A software fault
analysis tool is developed and programmed. Some results from this algorithm are provided and their
potential resource saving impact explored.

Program managers of software-intensive projects would be well advised to use the Army's
methodology and this fault analysis tool to potentially save critically short procurement resources.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Reliability, Software Metrics, Reliability 70
16. PRICE CODE

17. SECURITY CLASSIFICATION `18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Uaclassi fled UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
P1*%c,jre0 tbs AN%, S16 119 18

Approved for public release; distribution is unlimited.

SOFTWARE RELIABILITY
MANAGEMENT THROUGH METRICS

by

Douglas R. Burton
Lieutenant, United States Navy

B.S. Aerospace Engineering, U.S. Naval Academy, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NA7L POSLTG^UATE SCOLL

Author:

2• Eglas R. ýBurto'n-

Approved by: _ _ '0& _ _ _ __

Donald P. Gaver, Thesis Advisor

Norman F. Schneidewind, Thesis Advisor

ParcJ ,SodReader

Peter Purdue, Chairman
Department of Operations Research

ABSTRACT

As systems become increasingly software dependent, their

reliability will accordingly depend more so on the reliability

of their resident software. Just as techniques and processes

were developed and improved to ensure hardware reliability, so

must techniques evolve to ensure software reliability.

Two questions are addressed by this thesis. First, how do

we measure software reliability throughout a project's

lifecycle? Second, is there a tool which will provide

effective insight into the test-now-or-later problem?

The solution to our first question is a U.S. Army software

procurement methodology which is briefly outlined as the

overall framework for software procurement in this thesis.

The solution to our second problem is the primary focus of

this thesis. A software fault analysis tool is developed and

programmed. Some results from this algorithm are provided and

their potential resource saving impact explored.

Program managers of software-intensive projects would be

well advised to use the Army's methodology and this fault

analysis tool to potentially save critically short procurement

resources. Accesion For
NTIS CRM&I

DTI- TAR

J_ t.. ... ,CT ,o :

by

D,-t h,. ito: I

iii D,_.t , . . .i

I C

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While effort has been made, within the time

available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these programs without

additional verification is at the risk of the user.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM BACKGROUND 4

B. THE TWO-PART PROBLEM 5

II. A METRIC SOLUTION FOR SOFTWARE MANAGEMENT 8

III. RELIABILITY MODEL DEVELOPMENT 14

IV. MODEL APPLICATION 22

V. CONCLUSIONS AND RECOMMENDATIONS 31

APPENDIX A 35

A. COST 35

B. SCHEDULE 37

C. COMPUTER RESOURCE UTILIZATION 38

D. SOFTWARE ENGINEERING ENVIRONMENT 39

E. REQUIREMENTS TRACEABILITY 40

F. REQUIREMENTS STABILITY 41

G. DESIGN STABILITY 42

H. COMPLEXITY 43

I. BREADTH OF TESTING 44

v

J. DEPTH OF TESTING 45

K. FAULT PROFILE 47

L. RELIABILITY 48

APPENDIX B 50

APPENDIX C 58

LIST OF REFERENCES 61

INITIAL DISTRIBUTION LIST 63

vi

I. INTRODUCTION

As the Department of Defense progresses through the end of

the twentieth century and into a new and very uncertain

twenty-first century, one area can be considered a near

certainty: system reliability will become increasingly

dependent on software execution. Today many systems (Patriot

anti-missile, Space Shuttle, weapons' guidance, and aircraft

control systems among others) are being deployed which depend

extensively on correct software execution in order to achieve

desirable and intended overall system task execution.

Successful task execution is essential for overall mission

success and goal achievement; misperformance of even a simple

computing task can result in total mission failure. Mission

failure could certainly mean returning to base because of a

weapon's guidance error, without destroying a single target,

or it could mean failing to destroy an incoming ballistic

missile, as a result of an imperceptible guidance error, with

disastrous consequences. Such outcomes are unacceptable, and

quite fortunately, occur very infrequently.

Experience with modern systems during Operations Desert

Shield and Desert Storm indicates that the Department of

Defense system procurement policies generally produce systems

of acceptable quality and suitability. Suitability is a clan

of system properties that includes reliability, defined to be

the probability that the system performs its mission without

functional failure. Since modern weapons, such as missiles,

depend upon electronic sensors and information-processing

components to carry out their mission, reliability of the

sophisticated electronics and its software is essential to

achieve mission success.

To produce highly reliable products many system tests,

analyses, and simulations are typically conducted before

release is granted to actual operators. This extensive

process consumes many procurement resources (man-hours,

platform availability hours, and dollars). Errors, resulting

from faulty design, inadequate simulation, and premature

system test during the procurement process result in the waste

of valuable resources. In the light of nearly guaranteed

reductions in procurement resource availability in years to

come, and the ever-increasing dependency of systems on

software for task execution, the Department of Defense must

strive to procure and test systems economically and in minimal

time.

Managing the procurement process is no simple task, and

there are gray-areas in which mistakes will often be made.

However, a tool, or tools, which potentially reduces the

number of these gray-area mistakes will certainly reduce the

consumption of procurement resources. This reduction in

resource consumption by individual projects, accompanied by a

2

constant or increased level of system reliability and

performance, becomes the procurement manager's goal.

This thesis will address an approach to assist in

achieving the procurement manager's goal that uses software

metrics as statistical indicators of the attained level of

software reliability of a system. A manager responsible for

procurement and acceptance of software intensive systems is

well-advised to use these metrics to help make critical test-

now-or-later decisions. The guidance offered may result in

significant resource savings if it leads to appropriately

postponing a prematurely scheduled test, one highly likely to

lead to early termination without obtaining useful results,

but which, nevertheless, consumes many man-hours, much

platform time, and many dollars. A well-supported decision as

to when software intensive systems are ready for operational

test potentially saves both project time and money.

In the next two sections a two-part software reliability

problem will be described. The overall problem of improving

the software procurement process and the subset problem of

gray-area test-now-or-later decisions will be included. In

Chapter II, a metrics-supported solution will be presented to

address the overall problem. In Chapter III, a specific fault

analysis model will be described to address the gray-area

decision problem. In Chapter IV, two sets of software fault

data are analyzed using an algorithm which represents the

fault analysis model from Chapter III. In Chapter V,

3

conclusions and recommendations are presented. The appendices

include: details about 12 base software metrics from Chapter

Ii, the algorithm based on the Chapter III fault analysis

model, and an additional fault-analysis model which is

slightly different from the one in Chapter III.

A. PROBLEM BACKGROUND

Since approximately 1970, software reliability has

steadily emerged as a primary area of i-terest for procurement

agencies tasked with purchasing software-intensive systems.

Both civilian and Depa--tment of Defense procurement agencies

acquire software-intensive systems regularly.

In modern times measuremeit techniques have been developed

and integrated into the hardware acquisition process. For

example, an M-16 semi-automatic assault rifle goes through an

extensive process of measurement and re-measurement in order

to confidently ascertain that a very reliable weapon is

delivezed to the soldier in the field.

At present, many hardware items depend in an important way

on sister software units foi information processing and

guidance to comply with documented requirements. Such

dependency upon software can be anticipated to increase over

time. For example, the software interface and control for a

Vulcan Phalanx anti-air defense cannon is one such sister

software unit, the failure of which can result in catastrophic

4

system failure, or, at the very least, in considerable

inconvenience.

B. THE TWO-PART PROBLEM

The assessment of software reliability, while consuming

minimal procurement resources, becomes the overall problem

addressed by this thesis. A software metric or measurement

process is provided in Chapter II to address this overall

software reliability problem. Over time, progress has been

made in developing software performance measurement techniques

that are increasingly cost-effective. These techniques are

still in their infancy, yet do, and have, frequently achieved

their objectiveýs.

An example of this progress in civilian-sector practice is

the current process of software performance measurement

practiced at IBM, Houston, for the Space Shuttle's primary

avionics software (Keller, 1992). The measurement too- used

at IBM is a Schneidewind non-homogeneous Poisson fault

analysis model (Farr, 1991, Schneidewind, -992). The

objective of this IBM measurement tool is to predict the

probability of encountering a serious primary software error

during onboard processing on the next Shuttle mission. This

objective falls squarely in line with the overall Shuttle

project manager's goal of preventing any such failures. Thus,

with this measurement tool the Shuttle project manager could

reasonably expect to make appropriate decisions concerning the

5

level and extent of ground testing, which would directly

result in resource savings.

To illustrate our second problem concerning gray-area

decision mistakes and their ramifications in defense

acquisition, a potential scenario (U.S. Navy-specific) is

appropriate. Suppose that an anti-air, surface-launched

missile system depends heavily on its resident software to

receive, interpret and execute all applicable sensor,

operator, and system inputs. Suppose this missile system's

program manager, without software metric information, feels

that an operational system test is now warranted for this

missile system. In conjunction with COMOPTEVFOR (Commander,

Operational Test and Evaluation Forces), the missile system is

readied for test. So, with a warm feeling about the missile

system, the project manager pushes the system through to this

operationai testing phase, very possibly a marginally-

justifiable or gray-area decision. At this point, during the

OP-test, a severe software fault could result in significant

resource losses (e.g., many man-hours, much platform time, and

monies). To reduce the probability of this resource-wasting

scenario occurring, a fault-analysis model is provided in

Chapter III as a specific tool to potentially reduce the

number of these gray-area mistakes. As part of the overall

software reliability process proposed in Chapter II, a

predictive software fault analysis is developed in this thesis

to address this second problem. Previous research, entitled

6

Fitting and Prediction Uncertainty for a Software Reliability

Model (Dennison, i992), has been undertaken. In this previous

study a Non-Homogeneous Poisson Process (NHPP) model was

presented and analyzed. This thesis will develop a

generalized version of this previous work which utilizes a

different likelihood approximation which allows for varying

software execution times covering separate operating periods

(i.e., weekly, daily, etc.). This generalized version

supports data akin to most real-world periodic data collection

techniques.

Our problem then has been presented in two parts. Stated

as questions: first, is there an approach whereby software

reliability can be increased to operationally acceptable

levels throughout the procurement process, and second, prior

to the operational test phase, can we use a specific tool to

predict the propensity for errors to occur in the near future

for our software-intensive system? Solutions to these

problems will be addressed in the next few chapters.

In Chapter III, a software-metrics approach will be

introduced and discussed as a positive solution to our first

problem. Also, a metric quality assurance (e.g., appropriate

metric selection) question will be raised and discussed.

7

II. A METRIC SOLUTION FOR SOFTWARE MANAGEMENT

The Department of the Army has put together an extensive

software development guidance package draft entitled Software

Test and Evaluation Procedures and Guidelines, (Draft

Software, 1992). In this document, a process to economically

procure defense software is thoroughly addressed. The basis

for this effective process is continuous evaluation.

"Decision-making must be based upon substantive evaluations of

software characteristics, maturity, and reliability indicators

throughout the lifecycle" (Army, 1-5, 1992). With this goal

the Army plan uses software metrics, which are defined as "a

quantitative value, procedure, methodology, and/or technique

which allows one the ability to measure various aspects and

characteristics of software," (Army, Glossary-5, 1992) to

quantify software characteristics so that a program manager

can indeed make decisions based on the metric information

which will either save procurement resources, produce more

capable systems, or both.

This draft process directly addresses our first and

overall software reliability problem. A group of 12 primary

software metrics form the building blocks for the Army's

proposed metric analysis for software-intensive systems.

These 12 metrics are outlined in Appendix A and briefly

discussed in this chapter. The Department of the Army also

8

places each of these 12 metrics into one of three categories;

management, requirements or quality.

The management category includes four metrics: cost,

schedule, computer resource utilization and software

engineering environment. Cost is a tool to compare budgeted

versus actual costs as well as scheduled versus actual

progress. Schedule provides insight into milestone progress,

or lack thereof. Computer resource utilization is a tool to

track the degree of computer processing usage (e.g., computer

processing units, input processors, and memory registers).

The software engineering environment metric is a numerical

rating tool for any given contractor, based on evidence of

that contractor's historical adherence to certain software

engineering practices and procedures.

The requirements category contains both requirements

traceability and stability metrics. Traceability provides a

measure of contractor conformity to system requirements (e.g.,

the percentage of system requirements that are being met by

the software code). Stability indicates how much change the

system requirements have exhibited because of software non-

conformity (e.g., the percentage of requirement changes from

the baseline initial project list of requirements).

Lastly, the quality category contains six software

metrics: design stability, complexity, breadth of testing,

depth of testing, fault profile, and reliability. Design

stability reflects the amount of change to software design

9

(e.g., percentage of the source line of code (SLOC) that is

affected by any implemented change to the software design).

Complexity supplies insight into the structure of the software

and includes measures, like the McCabe cyclomatic complexity

measure (McCabe, 1976), to quantify the structure for any

software module. Breadth of testing indicates through

percentage conformity how well testing has covered the

functional requirements. Depth of testing helps indicate the

extent that executable paths within individual modules have

been exercised (e.g., percentage of the executable paths

utilized) . Fault profiles furnish insight into a contractor's

ability to correct known discrepancies, and provide rough

insight into software quality through fault correction

tendencies and fault occurrence tracking. Finally, the

reliability metric utilizes modeling techniques to make

predictions of future software readiness, meaning freedom from

faults during execution.

These 12 base metrics are each detailed further in

Appendix A. Example figures and applicable equations are also

included as part of the appendix.

To utilize these 12 metrics as an effective managerial

tool, a program manager would consider all available metric

information as a part of any milestone review process. Each

applicable metric can provide the additional information

necessary to help signal problems or progressions within the

software's development.

10

At each milestone review the software-metric information

should be made available to all involved agencies. This

information-sharing policy would potentially lead to earlier

software problem identification which should in-turn result in

resource-saving decisions. For example, a significant

software inadequacy relating to contractor requirements

accomplishment would certainly be indicated in the software

requirements traceability and stability metrics information as

numerically low conformity percentages. This requirements

inadequacy would in all likelihood surface earlier in the

acquisition process given the software-metrics information.

This quantitative and often earlier problem recognition would

most certainly lead to timely managerial attention and

resulting resource savings. Thus, the metrics methodology

becomes a quantitative management tool for any software-

intensive program.

The 12 Army metrics form a base set of software metrics

within which deletions or additions may be appropriate. Many

other metrics exist which may or may not be appropriate for a

particular project (Siefert, 1989) . To start with this set of

12 metrics as the primary initial evaluation point becomes an

initial and basic goal for a project manager. From this

initial set, some metrics may be considered inapplicable and

consequently removed from consideration for inclusion in

project data requirements. Still others, outside the basic

12, may be incorporated into the list of applicable metrics,

11

and be subsequently included in the project data requirements

list.

Given the Army metric plan, the selection and evaluation

of appropriate software metrics is no simple endeavor, but is

essential for obtaining useful quantitative information

throughout the project lifecycle. Guidance to choose suitable

software metrics would be beneficial as part of the software

metric selection and utilization process. The recently

approved and distributed IEEE Standard for a Software Quality

Metrics Methodoloqy (IEEE, 1993), promises to be a useful tool

to aid in the evaluation and selection of an appropriate set

of software metrics. Direct guidance for software metric

validation is included as part of the process by which better

overall software quality is achieved.

Once a set of software metrics has been selected and

validated with respect to applicability to the system under

development, and has been included in system data

requirements, then, and only then, can a project manager

expect to successfully receive, analyze, apply, and profit by

information that he or she would obtain from the metrics

throughout a project's lifecycle. Better software decisions

(i.e., decisions that would lead to increased quality and

expedited operational deployment) should evolve from an

effectively managed software metric plan which would in turn

lead directly to resource savings.

12

The software metric approach, when implemented as part of

the milestone review process, can become a crucial management

tool for all phases of software development. A prevalent

problem appears to stem from the propensity of program

managers to make premature resource-wasting decisions

concerning the progression of their projects through the

procurement process because of inadequacy of information

concerning the faults currently resident in their software.

The use of software metrics, after validation, should

positively influence this decision making process at every

stage of system procurement.

With the Army's process to address overall software

management guidance, our second and much more specific problem

can be addressed. This test-or-do-not-test decision problem

is one that a program manager in conjunction with the testing

agencies must make very often. A quantitative indicator which

provides insight into the propensity for software to encounter

future faults would be very valuable. With this obstacle in

mind, a predictive tool for just this purpose is described and

exercised in the next two chapters. The major impact of this

thesis stems from Bootstrapping (Efron, 1985) a NHPP model

(Goel, 1979) and a computer program that allows this

Bootstrapped model to be applied to real test data.

13

III. RELIABILITY MODEL DEVELOPMENT

A Non-Homogeneous Poisson Process (NHPP) software

reliability model is constructed using the following

assumptions:

"• Program test runs are conducted in non-overlapping

time intervals.

"* The fault counts in each interval are independent.

"* Each fault is corrected as it is detected.

"* The fault detection rate is modeled as exponentially

decreasing over time.

"• The faults each have the same severity.

"* The faults are equally likely to be detected.

"• Fault counts are recorded after like intervals of

calendar time (e.g. daily, weekly etc.).

The mathematical model (Goel, 1979) is simply

P {f jI t 1} w- 1

(1

where the subscript i represents the ith run-time interval.

These i intervals need not be of the same time length nor

contain the same number of faults. They may represent the

total time a program is run on a day, week, etc. The fi term

is the number of faults that occur during period i; t1 is the

cumulative amount of program run time up to and including

14

interval i; and ki is the mean fault parameter for interval i.

The parameter ki is further defined as

l•=l [(-e-•t•)- (-e-•t•-)](2)

so

k 1 • (e -P 't _, _-1. • - e (3)

In the present model X and g are the overall NHPP system

parameters and are to be estimated using the data set. The

maximum likelihood method (Larson, 1982) is used to estimate

these parameters.

L(X1, Vdata) =le fl (4)

is the likelihood function. Taking the natural log and using

I to represent the total number of time intervals results in

I I AL (1~, VIda ta)=inL (1, zda ta) =- .,i + f.in_, !" -1n (5)

Substituting the expression for ki from (3) we get

15

-ClIdata) - (e- -e f-ln [1

I I
+ if.,"in [e-'• -e ']- f 'i (f !)"=

.Z=1 .

Next, to find a maximum for this log-likelihood function take

the partial derivative of L(XdIdata) with respect to X to get

dL I I- T--/ (e`c-'.--e`t-•'•)+• f (7)

Sum out (7) to obtain

- -= (1-e -Rt,) +(_) f , (8)
dXI

where f. is the cumulative number of faults for all periods i.

Equate the derivative to zero and solve for the maximum

likelihood estimate

f+ (9)

After replacing X in (6) with • from (9) take the derivative

of the log-likelihood (6) with respect to g and set this equal

to zero, again to obtain a maximum likelihood estimate, to get

16

ie t -I')[-t - 1"e- t- e] =0. (10)

To solve for 9 in (10) an iterative procedure is used.

First, executing the summation in (10) results in

f÷.t~e-'=z• _t,-1*e -jI.t,__+ t ie-ptft1 -It fi']t e-=0. (11)
I - e -'z -i=e - •*-e-

Let x=(exp(-g.t:)) and also let

s 1 ft- 1 "et11+t -e-tj (12)
.f..ti~

Now, with (11) and (12) we observe that s=[x/(l-x)] and

alternately x=[s/(l+s)].

To begin the iterative process, x is set initially to

number of faults for last half of the run time 2.(13)

number of faults for first half of the run time

This rough initial x-value is obtained from observing that the

square of the fraction of the expected value of the numerator

divided by the expected value of the denominator is indeed a

potential x-value choice. This rough x-value need not be very

precise. The iterative process will refine it quickly. Now,

with x=(exp(-t-t,)), solve for the first ft-value. Then with

this g-value solve (12) to get s. We then obtain our next x-

value from x=[s/(l+s)], which iteratively leads to a series of

g-values that are eventually an accordingly small number,

epsilon equal to 10', apart. When this is achieved the most

17

recent .-value becomes our model estimated parameter, A. From

(9) we get our estimate for X which is our other model

)arameter, X.

With the estimates A and X, obtained from the raw dac-a, we

can now proceed with the Bootstrapping technique (Efron,

1985) . This procedure recognizes the variability of raw data,

and by re-sampling allows us to expand our analysis from a

point estilrate (4,X) to confidence intervals.

First, using (3) and che estimates of X and g from the

original data, an estimated ki is computed for each interval

i. These Xi's &re then used to generate a new set of

synthetic observed data, denoted fi(b), using a Poisson random

number generator (Fishman, p. 440, 1978). Once this new data

set is available, a series of new estimates A(b) and X(b) are

obtained using the same procedures as above: (9) and (10).

This data regeneration and estimation procedure is repeated

200 times, giving (C(b), X(b)) for b=l, 2, 3,..., 200; our

pairs of bootstrapped estimates.

The resulting set of 200 estimated parameter sets forms

the nucleus for our statistical analysis, to be described

below.

Suppose there is interest in estimating the expected

number of faults to occur in a run-time interval of duration

T following the current period, (e.g., after the total

observed run-time t, has elapsed). In theory this is

18

m(T; t1 ;A,j.L) =E[N(t,+T) -N(t 1) I = e-•t.(l-e-) (14)

Now the maximum likelihood estimate (mle) of this mean

number of faults is obtained by substit:uting in the values of

the mle for the parameters X and ýi. Thus

A (r; t1; X, 1) =m(T; tr; X, 4) = 'e--P-t(l-1 e -)e (15)

Confidence limits can be placed on the mean number of

faults, and on the probability distribution of the number of

future faults, by using the bootstrapped parameter estimates

referred to earlier. Here is the procedure.

(a) Evaluate

A(b) m(-;tz;X b),X(b) (b) where b=1,2 , B. (16)

Note that the bth bootstrap estimate occurs in the

estimated mean.

(b) Sort these values in increasing order:

'1M<-3A (, (17)

where (1), is the jth ordered value of (fn (b)),

b=l, 2, 3, B.

(c) Define j(x)=[czB]= smallest integer at least as large

as XB, where .x100 is the desired percent confidence

19

(e.g., a=0.95). Then quote the ordered value m^,(,

as the approximate one-sided a.100% confidence

limit for the mean number of faults in interval

(t,, t.+T) (e.g., with confidence a.100% the mean

number of faults in that interval is less than or

equal to % (00- For this thesis upper (a=0.95) and

lower (a=0.05) one-sided confidence intervals are

studied.

(d) Because the distribution function of the Poisson is

specified by its mean we can state that with

confidence a.100% the probability that there will

be no more than k faults appearing in (t,, t,+T) is

k0
(18)

in particular with confidence approximately a.100%

the probability of zero faults is exp(-tji,,).

These model results become one basis upon which the

program manager and the testing agency can help determine

whether a project's software is indeed mature enough to

support further testing or deployment.

If the precise inter-occurrence run-times are known then

a slightly different NHPP formulation for the maximum

likelihood estimates of X and g are i,- -*d. These are

presented in Appendix C.

20

This NHPP model along with measured run-times and faults

recorded weekly or daily, etc., form the basis for a useable

prediction algorithm which is included as Appendix B. The

results obtained from using this algorithm on two separate

data sets are presented in Chapter IV.

21

IV. MODEL APPLICATION

Two available sets of data (COMOPTEVFOR, 1992) were used

to exercise the NHPP algorithm (Appendix B). These two data

sets are provided in Tables 1 and 2 below. The data are

displayed as the amount of software execution time during each

week long period and the associated number of software faults

encountered during that same week. Notice that Data Set One's

execution times are recorded in minutes, and Data Set Two's in

hours.

TABLE 1. DATA SET ONE

WEEK TIME IN MINUTES FAULT COUNTS

1 5.85 6

2 5.97 5

3 19.38 8

4 42.70 9

5 10.92 4

6 21.51 8

7 25.70 8

8 51.00 7

9 26.29 5

10 63.30 12

22

TABLE 2. DATA SET TWO

WEEK TIME IN HOURS FAULT COUNTS

1 40 3

2 30 7

3 67 4

4 35 1

5 38 6

6 30 6

7 25 1

8 25 1

9 85 4

10 41 3

For algorithm execution, the data sets above were entered

as cumulative execution times and cumulative fault counts.

Each of the two data sets contain ten data points.

Starting with only the first five data points, two predictions

were made using the NHPP algorithm. First, a prediction

utilizing five data points over the next two weeks (i.e., end

of the seventh week) of software execution time was made.

Second, a prediction utilizing the same five data points over

all available data points (i.e., end of the tenth week) was

made. These, two week, and, end of data, predictions were

also calculated for six, seven, eight, and nine data points.

Results are provided in Tables 3 and 4 for Data Set One and in

Tables 5 and 6 for Data Set Two. Data in Tables 3, 4, 5, and

6 is for 95% one-sided confidence intervals.

23

TABLE 3. DATA SET ONE
TWO WEEK PREDICTIONS (NEAR TERM)

95% ONE-SIDED LOWER AND UPPER CONFIDENCE INTERVALS
PREDICTED MEAN NUMBER OF FAULTS

NUMBER OF EXECUTION ACTUAL
DATA TIME NUMBER OF 95% LOWER 95% UPPER

POINTS (MINUTES) FAULTS

5 47.21 16 5.02 11.93

6 76.70 15 13.44 25.30

7 77.29 12 14.54 24.65

8 89.59 17 12.97 24.06

9 NA NA NA NA

TABLE 4. DATA SET ONE
END OF DATA PREDICTIONS (LONG TERM)

95% ONE-SIDED LOWER AND UPPER CONFIDENCE INTERVALS
PREDICTED MEAN NUMBER OF FAULTS

NUMBER OF EXECUTION ACTUAL
DATA TIME NUMBER OF 95% LOWER 95% UPPER

POINTS (MINUTES) FAULTS

5 186.80 40 8.87 24.65

6 165.29 32 20.94 43.18

7 139.59 24 23.02 41.85

8 89.59 17 12.97 24.06

9 63.30 12 10.71 19.63

24

TABLE 5. DATA SET TWO
TWO WEEK PREDICTIONS (NEAR TERM)

95% ONE-SIDED LOWER AND UPPER CONFIDENCE INTERVALS
PREDICTED MEAN NUMBER OF FAULTS

NUMBER OF EXECUTION ACTUAL
DATA TIME NUMBER OF 95% LOWER 95% UPPER

POINTS (HOURS) FAULTS

5 55 7 4.53 9.05

6 50 2 5.18 10.59

7 110 5 6.88 13.82

8 126 7 2.94 10.88

9 NA NA NA NA

TABLE 6. DATA SET TWO
END OF DATA PREDICTIONS (LONG TERM)

95% ONE-SIDED LOWER AND UPPER CONFIDENCE INTERVALS
PREDICTED MEAN NUMBER OF FAULTS

NUMBER OF EXECUTION ACTUAL
DATA TIME NUMBER OF 95% LOWER 95% UPPER

POINTS (HOURS) FAULTS

5 206 15 13.81 27.61

6 176 9 5.99 11.99

7 151 8 6.97 13.96

8 126 7 2.94 10.88

9 41 3 2.78 4.96

From Tables 3 through 6, one can see with both data sets

that as the number of data points available to the NHPP

algorithm increases, the mean fault confidence limits tend to

surround the actual fault counts more frequently. Also, for

predictions to the end of the data set, the lower and upper

confidence levels for Data Set One using only five data points

were much lower than the fault counts observed: there were 40

25

actual faults, but the lower and upper confidence limits were

8.87 and 24.65, respectively. The discrepancy suggests the

importance of caution at this stage.

Other interesting observations include:

"* Four of ten short-term (i.e., two-week) predictions

bounded the actual number of faults experienced.

"• Total run-time for Data Set One was just over four and

a half hours while Data Set Two had 416 total run-time

hours.

"* Data Set One had an overall fault rate of 15.85 faults

per hour (immature software) while Data Set Two had an

overall fault rate of 0.09 faults per hour (mature

software).

"* One-sided upper and lower confidence limits are closer

to actual fault counts for Data Set Two than for Data

Set One.

To briefly illustrate the tabular results of Tables 3, 4,

5 and 6, Figure 1, for Data Set One, and Figure 2, for Data

Set Two, are provided. All figures produced in this thesis

were generated using GRAFSTAT (GRAFSTAT, 1988), a commercial

statistical analysis tool. In these two figures nine weeks or

points of data were used with predictions provided over the

tenth week of software execution. These figures reflect the

nine data point results provided in the tables above. In

practice all data points would be used and predictions would

be calculated for a user-selected period of execution time

26

(e.g., the system software is required to operate for three

hours in the next test phase, so a three-hour predictive

window is selected by the user).

NHPP FAULT PREDICTIONS

DATA SET ONE
0
0

- .- 12 ACTUAL FAULTS A.
9"----- 10.71 PREDICTED FAULTS AVERAGE (.95 LOWER)
&--- 19.63 PREDICTED FAULTS AVERAGE (.95 UPPER)

LL.
00

ID

z
WJ 0

0 I I I I I

0 100 200 300

TIME IN MINUTES

Figure 1 DATA SET ONE

Figure 1, from Data Set One, displays a lower one-sided 95%

confidence prediction of 1.0.71 mean faults and an upper one-

sided 95% confidence prediction of 19.63 mean faults. These

predictions were made for an additional execution time of 63.3

minutes which coincides with the amount of execution time in

the tenth week of data. There were 12 actual faults recorded

in this same period. Thus our predicted mean values bound the

actual number of faults recorded. A program manager, prior to

27

week ten, using this model and algorithm could have predicted

that with 95% confidence this project's software would, on the

average, have no fewer than 10.71 faults or no more than 19.63

faults in the next 63.3 minutes of software execution time.

Additionally, with 90% confidence, this same manager could

predict that the mean number of faults to occur in the next

63.3 minutes of software run-time would be between 10.71 and

19.63, accounting for th 5% upper and lower one-sided

confidence tails.

NHPP FAULT PREDICTIONS

DATA SET TWO
0

0

S- 3 ACTUAL FAULTS A
S---V--- 2.7B PREDICTED FAULTS AVERAGE (.95 LOWER) -

S------ 4.96 PREDICTED FAULTS AVERAGE (.95 UPPER)

00

z

00
:2

0 I I I I I I I

0 100 200 300 400 500

TIME IN HOURS

Figure 2 DATA SET TWO

Figure 2, from Data Set Two, displays a lower one-

sided 95% confidence prediction of 2.78 mean faults and an

28

upper one-sided 95% confidence prediction of 4.96 mean faults.

These predictions were made for an additional execution time

of 41 hours which coincides with the amount of execution time

in the tenth week of data. There were three actual faults

recorded in this same period. Thus our predicted mean values

bound the actual number of faults recorded. A program

manager, prior to week ten, using this model and algorithm

could have predicted that with 95% confidence this project's

software would, on the average, have no fewer than 2.78 faults

or no more than 4.96 faults in the next 41 hours of software

execution time. Additionally, with 90% confidence this same

manager could predict that the mean number of faults to occur

in the next 41 hours of software run-time would be between

2.78 and 4.96, accounting for the 5% upper and lower one-sided

confidence tails.

An additionally interesting prediction involves allowing

for a very long prediction interval, approaching infinity.

This prediction furnishes information about the number of

faults remaining in the software and is included as Table 7.

As expected from our NHPP model and plots of the data, many

faults are likely to remain for both software projects when

considering an infinite amount of software-execution time.

29

TABLE 7. BOTH DATA SETS
FAULTS REMAINING PREDICTIONS (PRESENT TO INFINITY)
95% ONE-SIDED LOWER AND UPPER CONFIDENCE INTERVALS

PREDICTED MEAN NUMBER OF FAULTS REMAINING

DTER OF DATA SET ONE I DATA SET TWO
POINTS 95% LOWER 195% UPPER 95% LOWER [95% UPPER

5 108 667 95 241

6 151 856 80 232

7 396 815 110 302

8 119 264 140 407

9 153 295 89 159

All of the results obtained indicate that this NHPP tool

appears to be applicable to these data. Again, a rigorous

validation process is required to ensure that applicable

software metrics are selected for each individual software

project.

In Chapter V, conclusions and recommendations concerning

the overall metric process and this specific NHPP reliability

model are presented.

30

V. CONCLUSIONS AND RECOMMENDATIONS

In light of the results from Chapter IV, it becomes

apparent that a procurement agency would be well advised to

implement a software metrics methodology. The Army plan will

provide the overall structure to ensure that proper data is

collected, and analysis conducted, during a software-intensive

project's development and deployment.

Within the Army's software-metric methodology two other

actions must also occur. First, the metric information must

be made available to all involved agencies for analysis. One

agency may realize something another has missed. This

information sharing should result in an even greater resource

savings. Secondly, each metric must be rigorously validated

to ensure applicability within a project. Properly choosing

the set of software metrics is the first and perhaps most

important task in the resource saving metric process. Without

these two actions, an otherwise good metrics methodology will

perhaps not save as many procurement resources as it

potentially might.

For software, the CRLCMP (Computer Resources Life-Cycle

Management Plan), provides the instrument for implementing

this metric process. Metric requirements and their inherent

data requirements should be included in this document. It is

recommended that the CRLCMP define clearly these metric and

31

data collection requirements so that each software-intensive

project will, at inception, include adequate software metric

data collection and analysis requirements.

From the results in Chapter IV, several conclusions can be

drawn pertaining to the use of this NHPP algorithm.

First, and most importantly, a program manager could

certainly benefit from the information obtained through this

algorithm. For instance, from our data, after the sixth week

for either system, a manager trying to decide whether or not

to proceed with the next series of system tests, operational

or developmental, would most assuredly have been better

prepared to do so with the information calculated by this NHPP

algorithm. The NHPP algorithm's injection of information

quantifies the likely outcome of a test and its uncertainty as

support for a forthcoming decision.

Second, the NHPP algorithm gave predictive results which

frequently bounded the actual data results for both our

immature (Data Set One) and mature (Data Set Two) sof-ware-

intensive systems. These results suggest the applicability of

the NIIPP algorithm to quantitatively express the maturity

(i.e., mature software contains relatively fewer faults) of a

software-intensive system at all phases of its development

(i.e., both early when systems are generally still immature,

and later when such systems are generally more mature).

Third, when considering the long-term predictive results

for either data set, a program manager could reasonably expect

32

to gain substantial insight into a project's milestone

achievement potential. With this insight, a program manager

could potentially save valuable procurement resources by

making better decisions regarding software adjustments

throughout the project's lifecycle.

Fourth, as more data were used to predict the expected

mean number of faults in Chapter IV, the short-term predictive

information became more accurate and the difference between

the lower and upper 95% bounds became smaller. As data is

accumulated a program manager could expect to receive more

accurate short-term NHPP algorithm predictive results. This

increased accuracy could reasonably lead to even better

project software decisions.

Overall, this NHIP model with Bootstrapping can provide

accurate and timely information to a program manager. The

impact of this predictive model should result in better

management decisions which in turn should result in the saving

of valuable procurement resources. These savings would

certainly pay dividends in DOD's procurement process.

When exercising this NHPP model it is recommended that

SMERFS (Statistical Modeling and Estimation of Reliability

Functions for Software) (Farr, 1991), be also utilized to

provide alternate models for consideration arid additional

statistical information. SMERFS is available as an off-the-

shelf product and is included as a reference in this thesis.

Additional research would prove very valuable if

concentrated on each software metric, on the cost

effectiveness of metric data requirements, or on the impacts

of implemented software metrics methodologies throughout

civilian and government organizations.

34

APPENDIX A

The set of 12 metrics as presented primarily in the

Department of the Army's draft Software Test and Evaluation

Procedures and Guidelines are summarized in this appendix.

Three basic categories of measurement are delineated in this

draft literature. Cost, schedule, computer resource

utilization and software engineering environment metrics are

included in a management category. Requirements traceability

and stability metrics define a requirements category. Design

stability, complexity, breadth of testing, depth of testing,

fault profiles and reliability metrics fill out the quality

category.

A. COST

During a project life-cycle, software cost data should

continually be collected and analyzed. Indications of project

software well-being using this cost thermometer can be

expected.

Three areas require cumulative compilation. First, a

scheduled baseline of budgeted funds during each project must

be compiled (e.g., after 6 months the projgct software was

expected to achieve Milestone III, and 5 million dollars were

budgeted to reach this point). Next, the budgeted funds to

reach actual project progress must be detailed (e.g., at 6

35

months the project is approaching Milestone III, and 4 million

dollars were budgeted to reach this point). Finally, and

perhaps most importantly, the actual funds required to reach

the current project progress point must be revealed (e.g., at

6 months the project is approaching Milestone III, and 4.5

million dollars have been expended to achieve this).

Cost performance trends can be produced from these three

sources of data. Variability from expected, and therefore

budgeted, resource levels, as depicted in the cost (Figure 3)

and cost performance (Figure 4) figures below, will provide a

continual source of software management information to the

software manager.

COST

o I

C1)

0 2

--- BUDGETED COST FOR EXPECTED PROGRESS
Yv-- BUDGETED COST FOR ACTUAL PROGRESS

-.-- ACTUAL COST FOR ACTUAL PROGRESS

0L1

PROGRAM MONTH

Figure 3 COST

36

COST PERFORMANCE

-- COST VARIANCE
ZERO VARIANCE

C-- SCHEDULE VARIANCE

0 2 4 6 10

PROGRAM MONTH

Figure 4 COST PERFORMANCE

B. SCHEDULE

Adherence to a planned schedule of milestone achievement

can often not be accomplished. A schedule metric, when

properly utilized, can be used as an alarm device for further

investigative efforts by a software manager. Continual

milestone slip 'age may be indicative of software problems or

merely a poorly thought out schedule.

The planned month of milestone achievement should be

plotted versus the current program month (e.g., at actual

program month 9, Milestone IV was scheduled for completion in

program month twelve). A positively sloping line, Figure 5,

37

would reveal milestone slippage and perhaps software trouble

signs.

SCHEDULE

C3d

U

o

0

C1)

M

S• MILESTONE 1
z • MILESTONE 2

2 4 6 810

PROGRA MONTH

Figure 5 SCHEDULE

C. COMPUTER RESOURCE UTILIZATION

The computer resource metric portrays the degree which

central processing unit capacity, memory/storage capacity and

input/output capacity are changing or approaching the limits

of resource availability.

The central processing unit, each input/output channel,

random access memory and each mass storage device should be

monitored for utilization by tracking projected usage, actual

usage and target (upper bound) limits. Many off-the-shelf

software packages already self -monitor utilization parameters

38

and some do not. In either case project software

specifications must include these data collection

requirements. The central processing unit capacity, Figure 6,

displays a possible utilization scenario. The software

manager will be able to better assess potentially critical

software changes if this utilization metric were available.

COMPUTER RESOURCE UTILIZATION
0
0

----- TARGET UPPER BOUND
go A PROJECTED

-- e-- ACTUAL
0

C4

0 I I I I I I I I

0 2 4 6 8 10
PROGRAM MONTH

Figure 6 RESOURCE UTILIZATION

D. SOFTWARE ENGINEERING ENVIRONMENT

Contractors for software projects are varied and many.

Each of these contractors operate their businesses in

different manners.

The software engineering environment metric is simply a

measurement of how government software contractor's

39

engineering practices compare to each other on a numeric

rating scale. The key assumption behind this rating metric is

that a quality engineering process results in a quality

software product.

The data required for this engineering environment metric

consists of questionnaire data and an actual assessment visit

by a qualified independent group. The information from these

assessments results in a numeric grade, from one to five, for

each software contractor.

This engineering environment metric would be supplied to

the software manager as yet another tool to help make

managerial decisions concerning software progress or lack

thereof.

E. REQUIREMNTS TRACEABILITY

Contractual requirements for a software package are the

basis upon which development occurs. Users, administrators,

software managers and testers each take great care in

providing the strictest of guidance where system requirements

for contractors are specified. These requirements are

continually updated and improved upon.

A requirements traceability measure is essential to ensure

contractor adherence to specification and their continued

progress towards these requirements. This traceability

measure consists of a percentage conformity index which when

presented in matrix format at key milestone reviews can

40

provide early indications of software problems. The

percentage of satisfied requirements from different sources

can provide this valuable information (e.g., 86% of user

requirements and 74% of the operational requirements have been

met at Milestone II). Both forward and backward analysis of

these data become essential as requirements are added or

dropped with program maturity.

A software manager can better assess a contractor's

progress and possibly gain some preventive insight for the

future of the project by using these requirements traceability

indicators (e.g., are the user requirements acceptable?).

F. REQUIREMENTS STABILITY

As a software package progresses towards contractual

fulfillment, program managers may be forced to change any

number of requirements imposed upon a contractor (e.g., while

target information is being automatically updated there must

be an avenue available to manually alter the number of on-line

sensors) . A change in the contractual goal can often be a key

indicator for deeper system problems. This requirements

stability metric would track the number of engineering change

proposals, the percent source line of code changed and the

percentage of software modules affected by any change. Early

indications can be obtained, both good and bad, pertaining to

overall software well-being. A requirements stability

scenario is depicted in Figure 7.

41

REQUIREMENTS STABILITY

°J0

J 12
I

U0

0
U
0
U, 8 -

ZL.JIHIIU,0 4
I--
z
L)

Li
0.

0 1 2 3 4 5 6 7 8 9 10
0 PROGRAM MONTH

Figure 7 REQUIREMENTS STABILITY

G. DESIGN STABILITY

The design stability metric is used to depict the amount

of changes made to the design of software. This metric should

be utilized throughout the life of a project. The stability

is defined by ((M-(Fa+Fc+Fd)) / M) and the design progress

ratio is defined by (M / T). M is the number of modules

within the software. Fc is the number of modules that include

design related changes since the latest stability check. Fa

is the number of modules added since the latest stability

check. Fd is the number of modules deleted since the last

stability check. T is the number of modules projected for the

project. The design stability equation is simply a

42

mathematical representation of the degree that software design

elements have to be changed as the project progresses.

H. COMPLEXITY

Complexity analysis is based on a single assumption; the

more complex the software, the harder it is to test and

maintain.

The McCabe cyclomatic complexity metric should be

collected and analyzed throughout a project's lifetime. Each

module should be analyzed with McCabe's metric. The

complexity in McCabe's metric equals (E - N + 2P), where E

equals the number of edges (e.g., software calls or branches

to procedures or functions), N equals the number of nodes

(e.g. software procedures or functions) and P equal-, the

number of stand alone components (e.g., within a module, no

branches between one set of nodes and any other).

An analysis of complexity for the overall software package

using McCabe analysis consists of counting all modules whose

complexity rating falls in a certain interval and displaying

these results for all modules. An example of this technique

is shown in Figure 8.

Other complexity measures like the Halstead approach are

available and thoroughly discussed in the Army's Software Test

and Evaluation Guidelines. As a result of diligent complexity

analysis, the program manager should gain insight into future

effort concentrations for test and development of the

43

MCCABE CYCLOMATIC COMPLEXITY

30

o 20

0

z 10

0.
0-5 5-10 10-15 15-20 20-25 25-30 35-40 40-45

N MCCABE COMPLEXITY VALUE

Figure 8 COMPLEXITY

software.

I. BREADTH OF TESTING

The breadth metric details both how well a software

package demonstrates required functionality and how much

testing has been performed.

Three measurement ratios should be recorded and analyzed

throughout the lifetime of a project; test coverage which

equals the number of requirements tested over the total number

of requirements, test success which equals the number of

requirements passed over the number of requirements tested and

overall success which equals the number of requirements passed

44

over the total number of requirements. Figure 9 displays a

plausible breadth of test scenario.

Insight into testing adequacy and concentration can

BREADTH OF TESTING

100

80

80
Co)

U)
S60

• 40

20
0C

0-
MILESTONE 1 0 TEST COVERAGE MILESTONE 3

U TEST SUCCESS

Figure 9 BREADTH OF TESTING

readily be made by a program manager with this breadth metric,

when analyzed in conjunction with other metrics.

J. DEPTH OF TESTING

The depth metric details the extent and success of testing

on a software intensive system. Many execution paths exist

within any software package. If the testing process is not

exploring a wide range of these executable paths, then

undisclosed difficulties may present themselves later in the

system lifecycle.

45

Depth is comprised of three separate measurement ratios

(path, statement and domain) which are tracked for er 2h module

in the system. The path ratio is the number of paths in a

module that have been successfully executed at least once over

the total number of paths in the module. The statement

measurement ratio is the number of executable statements in a

module that have been successfully executed at least once over

the total number of executable statements in the module. The

domain measurement ratio is simply the number of various input

combinations attempted over the total number of available

input instances. Figure 10 depicts a plausible depth of

testing scenario utilizing the path ratio.

46

DEPTH OF TESTING

100

80

S [00 COVERAGE
a 60 OVERALL SUCCESS

40
IL

20

0
2 3 4 5 6

PROGRAM MONTH

Figure 10 DEPTH OF TESTING

Automated (internal) data collection is necessary for the

path and statement ratios. To insure this automated process

is included in the software capabilities, these data

collection functions must be included in the software system

requirements.

K. FAULT PROFILE

This metric is used to provide insight into software

quality and the contractor's ability to correct known faults

within the software. A simple plot of the cumulative number

of software trouble reports will reveal insight into the

software readiness, Figure 11.

47

FAULT PROFILES

0

c- - CUMULATIVE DETECTED
0_ 0e- CUMULATIVE CLOSED

-- , 4

an

I--

w

mo

fl

z

0 2 4 6 8 10

PROGRAM MONTH

Figure 11 FAULT PROFILES

Next, a plot of fault age (i.e., time a fault remains non-

corrected or open) is a very useful fault profile tool, Figure

12.

L. RELIABILITY

Reliability in software has been studied from many

different angles and each of these angles have their own

positive points. Every software intensive project should

require a complete analysis whten determining which reliability

technique(s) best fit a particular system. Reliability models

43

OPEN AGE HISTOGRAM

80

60
U',

LL

o 40

20
0

0-2 2-4 4-6 6-8 8-10 10-12 12-14
U WEEKS OPEN

Figure 12 OPEN FAULT HISTOGRAM

can be used as predictive tools just as our model in Chapter

III. SMERFS is an example of a software reliability modeling

tool that could be utilized as an Army reliability metric.

The reliability metric consists primarily of fault analysis

models like the one developed in this thesis. With the use of

an applicable reliability fault model resource savings can be

expected as with any applicable software metric.

49

APPMNDIX B

In this appendix, the NHPP with independent time

interval lengths, discussed in Chapter III is represented in

an algorithm. This algorithm was used to generate the

results referred to in Chapter IV. The program was written in

Pascal for personal computer use and was executed utilizing

Turbo Pascal 6.0 (Borland, 1990), a commercial Pascal package.

PROGRAM SoftwareReliability (cumfail,output);

(Software Reliability}
{Software cumulative fault count analysis with bootstrapping}
{LT Doug Burton, USN}
(Naval Postgraduate School, Monterey, CA 93943}

CONST epsilon = 1.OE-03;
LengthofDataSet = 10;
iteration = 200;

TYPE DATA = ARRAY [0..LengthofDataSet] of real;
RUNS = ARRAY [0..iteration] of real;

VAR Faults,Times,FaultsEnd, LAMi,tempfaults :DATA;
lamboot,muboot,lamprob,muprob,mean :RUNS;

XFirst,MU,LAMBDA, TotalTime,TotalFaults:real;

TotItFaults,A,B,key,Tother,percentile :real;

i,j,k,low,high :integer;

Cumfail :text;

{Faults = Number of system faults in each period}
{Times = Cumulative execution time for each period}
{FaultsEnd = Cumulative system faults for each period}
{LAMi = Set of Lambdas for each period}
{tempfaults = Temporary random fault counts in each period}
(lamboot = Lambdas generated from each bootstrapping run}
(muboot = MUs generated from each bootstrapping run)
(mean = Calculated means for each bootstrap iteration}

50

{XFirst Initial X value for EXP(-MU*total system time))
(MU = Model parameter)
(LAMBDA = Model Parameter}
{TotalTime = Total system execution time}
{TotalFaults = Total system faults encountered}
(TotItFaults = Total system faults for a bootstrap iteration)
(A and B = Dummy variables)
(key = Place holding variable}
{T = input variable for additional time analysis)
(other = a yes, no variable)
(percentile = user requested confidence percentile}
{i and j = Counters}
{low and high = The 5th and 95th percentiles)
(Cumfail = The cumulative data file being analyzed)

{*********FUNCTION TO DETERMINE THE FIRST X VALUE*********)

FUNCTION FirstXValue: real;

VAR SearchValue,FirstHalfCount,SecondHalfCount: real;
i :integer;

{SearchValue = Half of the total run time}
(FirstHalfCount = Faults in the first half of the run time)
(SecondHalfCount = Faults in the last half of the run time)
{i = location memory value)

BEGIN
SearchValue:= (TotalTime/2);
FirstHalfCount:= 0;
SecondHalfCount:= 0;
i:= 1;

REPEAT
i:=(i+l);

UNTIL (Times[i] >= SearchValue);

FirstHalfCount:= (FaultsEnd[i-l]+
((FaultsEnd[i]-FaultsEnd[i-l])*

((SearchValue-Times[i-l])/(Times[il-Times[i-li))));

S e c o n d H a 1 f C o u nt
(FaultsEnd[LengthofDataSet]-FirstHalfCount);

FirstXValue:= ((SecondHalfCount/FirstHalfCount)*
(SecondHalfCount/FirstHalfCount));

END; (FirstXValue}

51

(""**' **** FUNCTION TO SOLVE FOR MU* * ** * ** * *** *** * ** *

FUNCTION FindMU (XOne,TFaults :real; F :DATA) :real;

VAR MUCurrent ,MUNew, s,x, ti,t2, t3, t4 :real;
2. :inlteger;

{MUCurrent = Last estimate for MU)
{MUNew =This estimate for MU)
(s and x = Iteration Values)
{tl,t2,t3,t4 = temporary variables)
{i = counter)

BEGIN
s:= 0;
x:= 0;
i:= 0;

tl:= 0;
t2:= 0;
t3:= 0;
t4:= 0;

MUCurrent:= (((l)*LN(XOne))/TotalTime);
MUNew:= MUCurrent;

REPEAT

MUCurrent:=MUNew;

FOR i:= 1 TO LengthofDataSet DO BEGIN

tl:=Times[iI*EXP((-l)*MUCurrent*Times [ii);

t2:=Times[i-l]*EXP((-l)*MUCurrent*Times[i-1]);

t3:=EXP((-l)*MUCurrent*Times[i-1])

-EXP((.1)*MUCurrent*Times[i]);

t4:=t4 + (F[i]*((tl-t2)/t3));

END; (FOR Loop)

IF Ct4 < (0.01)) THEN t4:= 0.01;

s:= (t4/ (TFaults*TotalTime))
x:= (s/(l+s));
t4:= 0;

MUNew:= (CCl)*LN(X))/TotalTime);

UNTIL ((ABS(MUNew-MUCurrent)) <= epsilon);

52

FindMU:= MUCurrent;

END; {FindMU}

{********PROCEDURE TO GET LAMBDAS FOR EACH PERIOD*********}

PROCEDURE GenerateLambdas;

BEGIN
FOR i:= 2 TO LengthofDataSet DO BEGIN

LAMi[i]:=(LAMBDA*(EXP(-I*MU*Times[i-])-EXP(-I*MU*Times[i]))

END; (For loop)

LAMi[l]:=(LAMBDA*(I-EXP(-I*MU*Times[I])));
END; {Procedure GenerateLambdas)

{******PROCEDURE TO ASSIGN POISSON RV'S TO TEMPFAULTS*****}

PROCEDURE AssignPoissons;

VAR A,B,W,X,U :real;

BEGIN
FOR i:= 1 TO LengthofDataSet DO BEGINW:= EXP((-I)*LAMi[i]);

X:= 0;
A:= W;
B:= A;

U:= RANDOM(1000)/1000;

WHILE (U>A) AND (A<=0.9999) AND (B>=0.0001) DO BEGIN
X:=X+I;
B:= (B*LAMi[i])/X;
A:= A+B;

END; (While)

tempfaults[i]:=X;
TotItFaults:= TotItFaults+tempfaults[i];

END; {FOR Loop)

END; (PROCEDURE AssignPoissons}

********************THE MAIN PROGRAM**********************)

BEGIN
XFirst:= 0;
MU:= 0;

53

LAMBDA:= 0;
TotalTime:= 0;
TotalFaults:= 0;
TotItFaults:= 0;
T:= 0;
i:= 0;
j:= 0;
k:= 0;

FOR i:= 0 TO iteration DO BEGIN
lamboot[i] := 0;
muboot[i]i:= 0;

mean[i]:= 0;
END; (FOR Loop}

FOR i:= 0 TO LengthofDataSet DO BEGIN
Times[i]:= 0;
Faults[i]:= 0;
FaultsEnd[i]:= 0;
LAMi[i]:= 0;
tempfaults[i]:= 0;

END; (FOR Loop}

{*************INPUT THE DATA****************}

{Data comes from a data file listed next to the ASSIGN command

below.}

(The data in this file must be in a two column format.}

{The first column will contain the cumulative system execution
times.}

(The second column will contain the cumulative system fault
counts that correspond to the times of column one.}

(Hard returns should be used to place the data into this
file.}

(No column headers are necessary and will halt the program if
used.}

ASSIGN(Cumfail,'yourfile.dat');

RESET (Cumfail);

WHILE NOT EOF (Cumfail) DO BEGIN
j:=(j+l);
READLN(Cumfail,A,B);
Times[j]:= A;
FaultsEnd[j]:= B;

54

END; {WHILE)

FOR i:= 1 TO LengthofDataSet DO BEGIN
Faults[i] :=FaultsEnd[i]-FaultsEndlli-l];

END; (FOR Loop}

TotalTime:= Times[LengthofDataSet];
TotalFaults:= FaultsEnd[LengthofDataSet];

{***************Function and Procedure calls************** }

RANDOMIZE;

XFirst:= Firs tXValue;

MUJ:= FindMU(XFirst,TotalFaults,Faults);

LAMBDA:=(TotalFaults/ (1-EXP((-1) *MT*TotalTime)));

GenerateLambdas;

FOR k:= 1 TO iteration DO BEGIN
TotltFaults:= 0;
Ass ignPoissons;
muboot [k] :=FindMUCXFirst,TotltFaults,tempfaults);

lamboot~k] :=(TotltFaults/(l-EXP((-1)*muboot~k]*TotalTime)));
END; {FOR Loop}

low:= ROUND(iteration * (0.05));
high:= ROUND(iteration * (0.95));

Writeln('Please input the amount of time you want');
Writeln('to examine for faults in the future!');
Writeln('Any positive number will do.');
Writeln 1,'rA-U-T1:c!: ! '
Writeln('This amount of time MUST have the same');
Writeln('time units as your original data');
Writeln('EXAMPLE--Data is in minutes therefore your');
Writeln('input is 20.5 "minutes".');
Writeln('e.g. The upcoming test requires 20.5 minutes of');
Writeln('software execution time.');

Readln(T);

Writeln;

FOR i:= 1 TO iteration DO BEGIN
meanl~i]:= lamboot[i]*

(EXP((-1) *muboot[i]*Times[LengthofDataSet]))*

55

(l-EXP((-1)*muboot[i]*T));
END;

FOR j:= 2 TO iteration DO BEGIN
key:= mean[j];
i:= (j-l);

WHILE ((i > 0) AND (mean[i] > key)) DO BEGIN
mean[i+l] :=mean[i];
i:=(i-l) ;
mean[i+l] :=key;

END;

END;
Writeln('WITH 95% CONFIDENCE!');
Writeln('The maximum and minimum number of expected faults
in');
Writeln('the next ', T:3:3,' time units is');
Writeln(mean[high]:4:4,' and ',mean[low]:4:4,'
respectively.');

Writeln;
Writeln;

Writeln('Do you want to calculate a different confidence
bound?');
Writeln('e.g. Instead of 95%, you would like 98% bounds.');
Writeln;
Writeln('If yes, input a one now. If no, input anything
else.');

Readln(other);

Writeln;

IF (other=l) THEN BEGIN

Writeln('Input your desired confidence percentile now.');
Writeln('Use decimal format--e.g. 0.90 is your input for
90%');

Readln(percentile);

Writeln;

low:= ROUND(iteration * (1-percentile));
high:= ROUND(iteration * percentile);

Writeln('WITH ', (percentile*100):2:2,' % CONFIDENCE!');

56

Writeln('The maximum and minimum number of expected faults
in');
Writeln('the next ',T:3:3,' time units is');
Writeln(mean[high]:4:4,' and ',mean[low]:4:4,'
respectively.,);

END;

CLOSE (Cumfail);

END.

57

APPENDIX C

Suppose that the precise inter-occurrence run-times of

failures are recorded: let t, be the time from the moment the

program begins running until the first fault is encountered;

tj-, is the cumulative run time until the (j-l)st fault;

ti=ti_•+xj, so xj is the observed run time between the time of

occurrence of fault j-1 and fault j.

Given that the time to the (j-l)st fault discovery has

been observed, namely tj-I=x1 +x 2+x3 +.. .+x_1, the probability

that the time to the next (jth) fault exceeds x is, according

to our model,

P(Xl>xlX+X 2 +. +Xj-1=) - (C.1)

and then

P (xI>xlx 1 +x2 +.X. . xe 1=Ej) (C.2)

where Xi (j=1,2,3) represents the random inter-occurrence

time variables in our non-homogeneous Poisson process model.

Differentiation with respect to x gives the density

fj (X ; j .(e - .(e - - .(e - .x) (C .3)

58

Now, if we observe X =x1 then the likelihood component becomes

fj(xj;t'). Again, with tj representing our new cumulative

time of fault j occurrence and J being the number of the last

fault,

J

and taking the natural log of this likelihood function results

in

J JL:(IX pdata) =JT-in1+JTinp+ [-X1_ -j=

(C.5)

Differentiation with respect to X gives

J

I _ Z (C. 6)

Setting the derivative equal to zero and solving gives

1 , (C.7)
[(1-e ---)/T

which resembles (9) in Chapter III, but is not the same since

the times differ.

Next, differentiation with respect to g gives

59

JL JdLJ ((e-)])_3Ej (C.8)-w---~(X~ [Eje) - Ee~ijd j -7 ==

If the above derivative is eauated to zero an equation for

Sis obtained, once substitution of the expression for X in

terms of ., as (9) ir Chapter III, is carried out. An

iterative process for p could use this formula:

gn÷1 j JC.9)

An iterative process for both X and A would result in an

estimate for the model parameters R and X. With these

estimates in hand, Bootstrapping can then be applied to

produce confidence limits for reliability predictions as in

the previous case.

60

LIST OF REFERENCES

Borland International, Turbo Pascal 6.0, 1990.

Commander, Operational Test and Evaluation Forces,
(COMOPTEVFOR), Software-Intensive System Data, 1992.

Dejnnison, T., "Fitting and Prediction Uncertainty for a
Software Reliability Model," Master's Thesis, Naval
Postgraduate School, 1992.

Draft Recommended Practice for Software Reliability, American
Institute of Aeronautics and Astronautics, April, 1992.

Standard for a Software Quality Metrics Methodology, Institute
of Electrical and Electronics Engineers, Inc., 1993.

Draft Software Test and Evaluation Guidelines, Headquarters
Department of the Army, Vol.6, June, 1992.

Efron, B., "Bootstrap Confidence Intervals," Biometrika,
Vol.72, No.1, April, 1985.

Farr W. and Smith 0., Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS), Rev.2, March
1991.

Fishman, G., Principles of Discrete Event Simulation, pp.440-
441, Wiley, 1978.

Goel, and Okomoto, "Time-Dependent Error-Detection Rate Model
for Software Reliability and Other Performance Measures," IEEE
Transactions on Reliability, Vol.R-28, No.3, pp.206-211, 1979.

GRAFSTAT, AN APL System for Interactive Scientific-Engineering
Plotting, Data Analysis, Applied Statistics, and Graphics
Output Development, IBM, 1988.

Keller, T., Case Study-Predicting, Controlling, and Assessing
Reliability for Space Shuttle Primary Avionics Software, IBM,
1992.

Larson, H., Introduction to ProbabiliLy Theory and Statistical
Inference, pp.361-362, Wiley, 1982.

McCabe, T., "Complexity Measure," IEEE Transactions on
Software Engineering, SE-2, Number 4, pp.308-320, December
1976.

61

Musa, J., Tools for Measuring Software Reliability," IEEE
Spectrum, February, 1989.

Schneidewind, N., "An Experiment in Software Error Data
Collection and Analysis," IEEE Transactions on Software
Engineering, Vol.SE-5, No.3, May, 1979.

Schneidewind N. and Keller T., "Applying Reliability Models to
the Space Shuttle," IEEE Software, July, 1992.

Schneidewind, N., "Methodology for Validating Software
Metrics," IEEE Transactions on Software Engineering, Vol.18,
No.5, May, 1992.

Siefert, D., "Implementing Software Reliability Measures," The
NCR Journal, Vol.3, No.1, March, 1989.

62

INITIAL DISTRIBUTION LIST

No. Copies
i. Defense Technical Information Center 2

Cameron Station
Alexandria, %A 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor Donald P. Gaver 1
Department of Operations Research (OR/Ga)
Naval Postgraduate School
Monterey, CA 93943-5002

4. Professor Norman F. Schneidewind 1
Department of Administrative Sciences (AS/Sc)
Naval Postgraduate School
Monterey, CA 93943-5002

5. Professor Patricia Jacobs 1
Department of Operations Research (OR/Ja)
Naval Postgraduate School
Monterey, CA 93943-5002

6. Commander, Operational Test and Evaluation Force 1
Chief of Staff
Norfolk, VA 23511

7. Commander, Operational Test and Evaluation Force 1
Technical Director, Code OOT
Norfolk, VA 23511

8. Commander, Operational Test and Evaluation Force 2
Deputy Chief of Staff for OTE Support, 30 Division
Attention: Code 333
Norfolk, VA 23511

9. LT Douglas R. Burton 1
7843 Windy Lane
Massillon, OH 44646

63

